
Overview of Actuation Thrust

Fred Wang

Thrust Leader, UTK Professor 

ECE 620 CURENT Course

September 7, 2016



Actuation in CURENT
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Actuation Technology Linkages
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Basic Actuation Functions in Power Systems 

• Power flow control

• Voltage and var support

• Stability

• Protection

 Separation

 Fault current limiting

 Overvoltage suppression

• Energy source and load grid interface
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Power Flow Control

• Power flow is determined by Kirchhoff's Laws, e.g.
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Non Power Electronics Power Flow Actuators

• Voltage

 Generators (exciter control - PE)

 Switched shunt capacitor banks

 Transformer tap changer

• Impedance

 Switched lines

 Series compensation (switched series capacitors)

• Angle

 Phase-shifting transformers
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Example of Phase-shifting Transformers

• A direct, symmetrical PST with limited range and voltage magnitude 

change.  

• There are also other types (e.g. indirect PST)
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Non Power Electronics Voltage & Var Actuators

• Generator (exciter)

• Condenser

• Switched capacitor banks

• Transformer tap changer

• Load management
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Non Power Electronics Actuator for Stability

• Generator 

 Governor

 Power system stabilizer (excitation)

• Switchgear

 Line switching

 Source and load switching

• Switched compensators

 Reactors

 Capacitors 
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Protection - Breakers

Live-tank breakers
Dead-tank breakers
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Breaker with Switching Resistors

Switching resistors

Must absorb

energy during

switching

=> shorted after

several ms!
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Overvoltage Protection
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• Spark Gaps

 Metallic electrodes providing a gas insulated gap to flash 

over

 Very robust, but large variance in protection level 

• Magnetically blown Surge Arresters

 Same basic principle as spark gaps, adopt SiC varistors

but can handle much higher energy dissipation 

• Metal Oxide Varistor (MOV)

 Ceramic composites based on zinc, bismuth, and cobalt

 Highly non-linear current-voltage characteristic

 Very precise and stable protection level

 Limited overload capability

20 VI
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Metal Oxide Varistor (MOV)
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Power Electronics Power Flow Actuator
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• Voltage

 SVC (Static Var Compensator)

 STATCOM (Static Synchronous Compensator)

• Impedance

 TCSC (Thyristor Controlled Series Compensator) 

 SSSC (Static Series Synchronous Compensator)

• Angle

 TCPFT (Thyristor Controlled Phase-shifting 

Transformers or Angle Regulator)

• All 

 HVDC

 UPFC (Unified power flow controller)



Thyristor Controlled Series Capacitor (TCSC)

• A capacitive reactance compensator which consists of a

series capacitor bank shunted by a thyristor-controlled

reactor in order to provide a smoothly variable series

capacitive reactance.

• Can be one large unit or several small ones. Limits fault 

current when reactor is fully on.
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STATCOM and SSSC

• A static synchronous generator 
operated without an external 
electric energy source 

• Can be shunt or series connected

• As a shunt compensator, can 
inject reactive power

• As a series compensator , its 
voltage is in quadrature with, and 
controllable independently of, the 
line current for the purpose of 
increasing or decreasing the 
overall reactive voltage drop 
across the line and thereby 
controlling the transmitted electric 
power.
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Unified Power Flow Controller

• The UPFC, by means of angularly unconstrained series

voltage injection, is able to control, concurrently or

selectively, the transmission line voltage, impedance,

and angle or, alternatively, the real and reactive power

flow in the line.

• The UPFC may also provide independently controllable

shunt reactive compensation.
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Year
1954 1970 20001980

Mercury Arc Valve 

HVDC (Phased out)

Thyristor Valve

HVDC Classic 

IGBT (Transistor) Valve

HVDC Light 

Pros:  Low losses

Cons: Reliability

Maintenance

Environment

Pros:  Reliable

Scalable

Cons: Footprint

Pros: Controllability    

Footprint

DC Grids

Cons: Losses

HVDC Technology Development
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Number
of lines:

Right of way ~300 ~ 120 ~ 90
(meter)

800 kV DC for long distance bulk power transmission

Tranmission of 6000 MW over 2000 km. Total 

evaluated costs in MUSD
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Power Electronics Actuator for Stability
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1st Thyristor-Controlled Series 
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Power Electronics Actuator for Protection
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VSC HVDC DC Fault Protection – Solution
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Main DC breaker

Fast disconnector Auxiliary DC breaker

Disconnect 

switch

• Fast fault clearance solution (<5 ms)

 ABB method: Hybrid DC breaker



Summary of Actuation Technologies

• Traditional non power electronics based actuators 

have limited actuation capability. The system is 

generally not very flexible

• PE based actuators (FACTS, HVDC) can be very 

effective for

 Power flow control

 Voltage and var control

 System stability

 Protection

 Interface of source and load

• Issues: cost, reliability

• Solutions: new PE technology, modular approach, 

hybrid approach, different architecture
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Modular Approach - Distributed FACTS
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Modular Converters for Multi-Terminal 

HVDC Systems
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Hybrid Approach - Thin AC Converter
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Actuation Thrust Objectives and Challenges

• Objectives

 Develop actuation methodology and system architecture that will 

enable wide-area control in a transmission grid with high 

penetration of renewable energy sources

28

• Challenges

1) Lack of cost effective wide-area system-level actuators

2) Lack of global actuation functions for the existing actuators or 

lack of knowledge how to use these actuators for global 

functions

3) System architecture not best suited for wide-area coordinated 

actuation and control for network with high penetration of 

renewable energy sources

4) Lack of design and control methodologies for systems with 

power electronics converters interfacing a high percentage of 

sources and loads



Technical Approaches and Research Focus
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• Multifunctional actuators to exploit full capabilities 

of existing or future actuators

 Renewable energy sources supporting system control 

 FACTS, HVDC

• Flexible and controllable transmission architecture

 Hybrid AC/DC

 Multi-terminal HVDC



Renewable Energy Sources for Grid Support

Objective: 
• Demonstrate grid 

supporting capability 

of renewable energy 

sources and energy 

storage in systems 

with >50% of 

renewables

Accomplishments:
• Renewable energy 

sources and energy 

storage working 

modes implemented 

in simulation & HTB
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Frequency Support Function Test in HTB
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• 80% renewable by onshore 

wind & offshore wind through 
HVDC

• Event triggered by a HVDC 
converter failure.

• Frequency and voltage support 
from onshore wind farm and 
the HVDC converters

• Curtailment and voltage mode 
control when necessary

• Integration of energy storage to 
further enable grid support 
controls
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Design of Renewable Interface Converters 

Considering Stability

Objective: Develop stability criterion and design methodology of renewable interface

converters to ensure stable operation of multi-bus systems with renewable

energy sources.
Grid-Connected Radial-line Renewable System Stability
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Hybrid AC/DC Transmission
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Basic Concept of Hybrid AC/DC System
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System topology:
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Benefits and Issues
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Benefits:

• A lower cost solution for increased power transfer and improved stability

Issues:
• Zigzag transformer may be saturated with unbalanced AC line 

resistance, due to the uncanceled DC flux within zigzag windings.

• Neutral point of zigzag transformer needs extra insulation to withstand 
dc bias voltage
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Active Unbalance Mitigation
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 Immunity to unbalance

Method 3: Hybrid line balance control

 Low voltage rating, no insulation issue

 Active impedance with low loss

 With extra converter cost, but low compared to main HVDC converters

Hybrid line impedance conditioner: 
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System Parameters

Line Length 650km

Impedance 0.035Ohm/km+

0.9337mH/km

Unbalance 5%

Line voltage 

(phase)

AC: 115 kV; DC 180 kV

Line current AC:  612A, DC:  1000A   

Transmission 

Power

729 MW (189 AC and 

540 DC)

Inverter AC 

voltage

3.183kV(peak)

DC link 

voltage

3.617kV

DC link

Capacitance

3300uF

Rectifier AC 

voltage

3.183 kV(peak)

Zigzag 

transformer

windings

balance design + 

conditioner winding 

(170/138/138/3)

Conditioner enabled at 0.6s. Control 

reference goes from zero to the desired 

impedance.



Magnetic Amplifier Controller
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Magnetic Amplifier Controller
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Magnetic Amplifier Controller
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Multi-terminal HVDC Modeling & Control
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Objective: Build a hardware platform for MT-HVDC system operation/control/protection 

development and demonstration

Multi-Terminal HVDC Testbed

MTDC Testbed Hardware
System Structure

• System start-up 

• Station online re-

commission

• Wind farm power variation

• Station outage

• Transmission line trip

• Station online mode 

transition

Offshore IOnshore I Wind emulator I

Wind emulator IIOffshore IIOnshore II

PCC 1

PCC 2

Cable 1

Cable 2

C
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b
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 3
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Testbed Capability on Scenario Emulation:
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MT-HVDC Testbed Interface
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VSC HVDC DC Fault Protection – A CURENT 

Proposed  Solution
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Smart and Flexible Microgrid

PCC

PCC

PCC

Local protective devices

Local controllers

Microgrid central 

controller

System control

Normal open smart switch

Normal closed smart switch

Electrical network

Communication and 

control network
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Conclusions 

• Actuation thrust provides essential technology 

for wide-area coordinated control, and directly 

supports the CURENT systems.

• Thrust research focuses on multifunctional 

actuators and flexible architecture.
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